218 research outputs found

    DashQL -- Complete Analysis Workflows with SQL

    Full text link
    We present DashQL, a language that describes complete analysis workflows in self-contained scripts. DashQL combines SQL, the grammar of relational database systems, with a grammar of graphics in a grammar of analytics. It supports preparing and visualizing arbitrarily complex SQL statements in a single coherent language. The proximity to SQL facilitates holistic optimizations of analysis workflows covering data input, encoding, transformations, and visualizations. These optimizations use model and query metadata for visualization-driven aggregation, remote predicate pushdown, and adaptive materialization. We introduce the DashQL language as an extension of SQL and describe the efficient and interactive processing of text-based analysis workflows

    Stable Flags and the Riemann-Hilbert Problem

    Full text link
    We tackle the Riemann-Hilbert problem on the Riemann sphere as stalk-wise logarithmic modifications of the classical R\"ohrl-Deligne vector bundle. We show that the solutions of the Riemann-Hilbert problem are in bijection with some families of local filtrations which are stable under the prescribed monodromy maps. We introduce the notion of Birkhoff-Grothendieck trivialisation, and show that its computation corresponds to geodesic paths in some local affine Bruhat-Tits building. We use this to compute how the type of a bundle changes under stalk modifications, and give several corresponding algorithmic procedures.Comment: 39 page

    Adaptive Execution of Compiled Queries

    Get PDF
    Compiling queries to machine code is arguably the most efficient way for executing queries. One often overlooked problem with compilation, however, is the time it takes to generate machine code. Even with fast compilation frameworks like LLVM, Generating machine code for complex queries routinely takes hundreds of milliseconds. Such compilation times can be a major disadvantage for workloads that execute many complex, but quick queries. To solve this problem, we propose an adaptive execution framework, which dynamically and transparently switches from interpretation to compilation. We also propose a fast bytecode interpreter for LLVM, which can execute queries without costly translation to machine code and thereby dramatically reduces query latency. Adaptive execution is dynamic, fine-grained, and can execute different code paths of the same query using different execution modes. Our extensive evaluation shows that this approach achieves optimal performance in a wide variety from settings---low latency for small data sets and maximum throughput for large data sizes

    Effects of synaptic noise on a neuronal pool model with strong excitatory drive and recurrent inhibition

    Get PDF
    Abstract A model originally proposed b

    Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli : differential effects on H- and TReflexes and possible mechanisms

    Get PDF
    Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for Treflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role

    Revolution analysis of three-dimensional arbitrary cloaks

    Full text link
    We extend the design of radially symmetric three-dimensional invisibility cloaks through transformation optics to cloaks with a surface of revolution. We derive the expression of the transformation matrix and show that one of its eigenvalues vanishes on the inner boundary of the cloaks, while the other two remain strictly positive and bounded. The validity of our approach is confirmed by finite edge-elements computations for a non-convex cloak of varying thickness.Comment: 6 pages, 4 figure

    Perspectives on the modeling of the neuromusculoskeletal system to investigate the influence of neurodegenerative diseases on sensorimotor control

    Get PDF
    The understanding of the neurophysiological mechanisms underlying movement control can be much furthered using computational models of the neuromusculoskeletal system. Biologically based multi-scale neuromusculoskeletal models have a great potential to provide new theories and explanations related to mechanisms behind muscle force generation at the molecular, cellular, synaptic, and systems levels. Albeit some efforts have been made to investigate how neurodegenerative diseases alter the dynamics of individual elements of the neuromuscular system, such diseases have not been analyzed from a systems viewpoint using multi-scale models. This perspective article synthesizes what has been done in terms of multi-scale neuromuscular development and points to a few directions where such models could be extended so that they can be useful in the future to discover early predictors of neurodegenerative diseases, as well as to propose new quantitative clinical neurophysiology approaches to follow the course of improvements associated with different therapies (drugs or others). Therefore, this article will present how existing biologically based multi-scale models of the neuromusculoskeletal system could be expanded and adapted for clinical applications. It will point to mechanisms operating at different levels that would be relevant to be considered during model development, along with implications for interpreting experimental results from neurological patients342176186CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP409302/2016-3; 312442/2017-3; 303809/2016-72015/21819-32015/14917-9; 2017/11464-

    Avaliação da inibição recíproca em humanos durante contrações isométricas dos músculos tibial anterior e sóleo

    Get PDF
    The purposes of the present study were (1) to develop a method to estimate the level of reciprocal inhibition (RI) between antagonist (soleus and anterior tibial) muscles in humans, and (2) to compare RI levels during rest, dorsiflexion (DF) and plantar flexion (PF). Nine healthy subjects (four men, five women) aged between 20 and 30 years were assessed. Each subject remained seated with his/her right foot strapped to a rigid foot plate coupled to a torquemeter; measurements were taken at rest and during isometric contraction of the ankle dorsiflexor and plantar flexor muscles. The soleus muscle H-wave was captured by surface electrodes. A "test" H- reflex was elicited by a stimulus (electrical pulse) to the popliteal fossa (tibial nerve). The "conditioned" H-reflex was obtained by paring two stimuli: the first applied to the head of the peroneal bone, and the second, following 1-to-3 ms, to the popliteal fossa. Peak-to-peak amplitudes of "test" and "conditioned" H reflexes were used to calculate RI. RI values obtained were 16.41%±8.68 at rest; 21.94%±5.39 in DF; and 3.12%±11.84 in PF. Reciprocal inhibition was significantly (pOs objetivos do presente trabalho foram: (1) desenvolver um método para estimar o grau de inibição recíproca (IR) entre músculos antagonistas em humanos (sóleo e tibial anterior) e (2) comparar os níveis de IR no repouso, na dorsiflexão (DF) e na flexão plantar (FP). Participaram nove sujeitos saudáveis com idade entre 20 e 30 anos, quatro homens e cinco mulheres. Os sujeitos permaneceram sentados numa cadeira com o pé direito apoiado e fixo num pedal acoplado a um torquímetro; as medições foram feitas no repouso e durante contração isométrica dos músculos dorsiflexores e flexores plantares do tornozelo. A onda H do músculo sóleo foi captada por eletrodos de superfície. O reflexo H (RH) "teste" do músculo sóleo foi medido aplicando-se um estímulo na fossa poplítea (nervo tibial). O reflexo H "condicionado" foi obtido pelo pareamento de dois estímulos: o primeiro aplicado sobre a cabeça da fíbula e o segundo, na fossa poplítea, após 1 a 3 ms.. As amplitudes pico-a-pico dos RH teste e condicionado foram utilizadas para o cálculo da IR. Os valores de IR foram: 16,41%±8,68 no repouso; 21,94%±5,39 na DF e 3,12%±11,84 na FP. Foi constatada menor inibição recíproca na FP quando comparada às demais condições (
    corecore